Nordhaus-Gaddum inequalities for the fractional and circular chromatic numbers

نویسندگان

  • Jason I. Brown
  • R. Hoshino
چکیده

For a graph G on n vertices with chromatic number χ(G), the Nordhaus–Gaddum inequalities state that d2 √ ne ≤ χ(G) + χ(G) ≤ n + 1, and n ≤ χ(G) · χ(G) ≤ ⌊( n+1 2 )2⌋ . Much analysis has been done to derive similar inequalities for other graph parameters, all of which are integer-valued. We determine here the optimal Nordhaus–Gaddum inequalities for the circular chromatic number and the fractional chromatic number, the first examples of Nordhaus–Gaddum inequalities where the graph parameters are rational-valued. © 2008 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Nordhaus-gaddum-type Inequalities for the Automorphic H-chromatic Index of Graphs

ing and Indexing: Zentralblatt MATH. AUTHORS INFO ARTICLE INFO JOURNAL INFO 2 Nordhaus-Gaddum-type inequalities

متن کامل

Nordhaus-Gaddum results for the convex domination number of a graph

The distance dG(u, v) between two vertices u and v in a connected graph G is the length of the shortest uv-path in G. A uv-path of length dG(u, v) is called uv-geodesic. A set X is convex in G if vertices from all ab-geodesics belong to X for every two vertices a, b ∈ X. The convex domination number γcon(G) of a graph G equals the minimum cardinality of a convex dominating set. There are a larg...

متن کامل

An Inertial Lower Bound for the Chromatic Number of a Graph

Let χ(G) and χf (G) denote the chromatic and fractional chromatic numbers of a graph G, and let (n+, n0, n−) denote the inertia of G. We prove that: 1 + max ( n+ n− , n− n+ ) 6 χ(G) and conjecture that 1 + max ( n+ n− , n− n+ ) 6 χf (G). We investigate extremal graphs for these bounds and demonstrate that this inertial bound is not a lower bound for the vector chromatic number. We conclude with...

متن کامل

Inequalities for the first-fit chromatic number

The First-Fit (or Grundy) chromatic number of G, written as χFF(G), is defined as the maximum number of classes in an ordered partition of V(G) into independent sets so that each vertex has a neighbor in each set earlier than its own. The well-known Nordhaus–Gaddum inequality states that the sum of the ordinary chromatic numbers of an n-vertex graph Contract grant sponsor: Hungarian National Sc...

متن کامل

Bounds on the Chroma . Tic and Achromatic Numbers of Complimentary

In the present note, exact upper bounds on the sums of chromatic and achromatic numbers of complimentary graphs are determined Which prove in particular a conjecture by Hedetniemi (1966) and imply a bound due to Nordhaus and Gaddum (1956).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2009